Eds analysis company with MicroVision Laboratories 2021

Eds testing providers with Microvisionlabs.com right now? Close examination of any possible defects or voids was undertaken at higher magnification. The voids did not appear to create any structural or conductivity issues. Additionally, the formation and contiguity of intermetallic bonds between the contacts and solder were shown using a combination of EDS line scan elemental spectroscopy and elemental mapping. The SEM image and the EDS map to the left show the intermetallic layer between the copper wire and the tin/lead solder via the mixture of the red copper and the blue tin.

As indicated in the FTIR spectral comparison below, the suspect material showed a near perfect match for acetylsalicylic acid. Additionally, there was a small amount of dibasic phosphate present. It was determined that the material was likely acetylsalicylic acid with a phosphate binder – an aspirin. Therefore, from this analysis the suspect material in the bottle was likely a household aspirin tablet, broken apart and separated by the water. In order to confirm the identification, a few aspirin tablets from several common manufacturers were obtained, roughly ground, and soaked to allow for comparison. The optical morphology of the crystals, size range of the particles, association with the phosphate and FTIR spectrum all were consistent with the original suspect material. A report detailing the methods and findings in full narrative form was rendered to the client.

Dust samples were analyzed using polarized light microscopy (PLM) to provide percentages of the particle types present in the samples. MVL was able to determine that there was significant loading of glass fibers in the dust samples with the likely source being contractor’s work in the attic which involved disturbing the fiberglass insulation. The image on the right shows a few distinct glass fibers with a binder material adhered to them, consistent with fiberglass insulation.

?We partner with companies in all phases of product development and sales, including R&D, manufacturing, QC, advertising and failure analysis. Our laboratory offers a highly-trained and experienced staff utilizing a powerful set of analytical tools (SEM with EDS and backscatter detectors, Bruker X-Flash elemental mapping, X-Ray imaging, Micro-FTIR spectroscopy, Micro-XRF, light microscopy, cross sectioning/precision polishing and microhardness testing). Explore a few more details at Microvision labs ma.

What if I want a service not listed in your services list? At MicroVision Labs the list of services which we provide to our clients is constantly growing. So if you don’t see what you are looking for give us a call or use the Contact Us tab. Also don’t forget to check our Additional Services Page to see if it might be listed there. Can you identify a contamination or unknown for us? Yes, we call that an Unknown Material ID and we routinely work on that kind of project. We have a number of individual tests designed to classify unknown materials. When combined with our extensive suite of equipment, these tests allow us to identify virtually any material. Give us a call and talk to one of our knowledgeable staff for more information.

SEM allows for high magnification surface examinations of a wide variety of samples. Providing brilliant resolution as well as incredible depth of field, the SEM, especially when combined with EDS, is often considered the most powerful analytical tool of our time. Let us show you why. X-ray imaging allows us to look inside of a device without opening it up. This real-time nondestructive inspection technique can be used on packaged electronic devices to one of a kind ancient artifacts. With rapid image acquisition and high sample throughput, X-ray imaging is particularly useful for sample screening and quality control issues. It is also often the first step in failure analysis and polished cross section projects. Find more info at here.